apply(meetup) - Building Malleable ML Systems through Measurement, Monitoring & Maintenance

Wednesday, August 11, 9:10am - 9:40am (PDT)

Machine learning systems are now easier to build than ever, but they still don’t perform as well as we would hope on real applications. I’ll explore a simple idea in this talk: if ML systems were more malleable and could be maintained like software, we might build better systems. I’ll discuss an immediate bottleneck towards building more malleable ML systems: the evaluation pipeline. I’ll describe the need for finer-grained performance measurement and monitoring, the opportunities paying attention to this area could open up in maintaining ML systems, and some of the tools that I’m building (with great collaborators) in the Robustness Gym and Meerkat projects to close this gap.

Speaker:
Karan Goel, PhD Student, Stanford University
Karan Goel is a 3rd year CS PhD student at Stanford advised by Chris Ré. His main goal is to accelerate the pace at which machine learning can be robustly and safely used in practice across applications, and in industry at large. He leads the Robustness Gym project, where he builds tools to measure, monitor and repair machine learning systems interactively. He is a recipient of the Siebel Foundation Scholarship.

Add to Calendar 2021/08/11 09:10:00 2021/08/11 09:40:00 America/Los_Angeles apply(meetup) - Building Malleable ML Systems through Measurement, Monitoring & Maintenance Machine learning systems are now easier to build than ever, but they still don’t perform as well as we would hope on real applications. I’ll explore a simple idea in this talk: if ML systems were more malleable and could be maintained like software, we might build better systems. I’ll discuss an immediate bottleneck towards building more malleable ML systems: the evaluation pipeline. I’ll describe the need for finer-grained performance measurement and monitoring, the opportunities paying attention to this area could open up in maintaining ML systems, and some of the tools that I’m building (with great collaborators) in the Robustness Gym and Meerkat projects to close this gap.

Speaker:
Karan Goel, PhD Student, Stanford University
Karan Goel is a 3rd year CS PhD student at Stanford advised by Chris Ré. His main goal is to accelerate the pace at which machine learning can be robustly and safely used in practice across applications, and in industry at large. He leads the Robustness Gym project, where he builds tools to measure, monitor and repair machine learning systems interactively. He is a recipient of the Siebel Foundation Scholarship.
Zoom and YouTube Live links to be provided closer to the event false MM/DD/YYYY 30 OPAQUE awFyHhintzGWPNfvXmVh109699

Wednesday, August 11, 9:10am - 9:40am (PDT)

Zoom and YouTube Live links to be provided closer to the event

Tecton Events, events@tecton.ai